/* model/map.cc This file is part of the Osirion project and is distributed under the terms of the GNU General Public License version 2 */ #include "auxiliary/functions.h" #include "filesystem/filesystem.h" #include "math/mathlib.h" #include "model/mapfile.h" #include "model/material.h" #include "model/model.h" #include "model/vertexarray.h" #include "sys/sys.h" #include #include #include namespace model { // max geometry bounds const float MAX_BOUNDS = 16384; const float MIN_DELTA = 10e-10; // from radiant tools/quake3/q3map2/map.c math::Vector3f texture_baseaxis[18] = { // normal texture plane math::Vector3f(0,0,1), math::Vector3f(1,0,0), math::Vector3f(0,-1,0), // floor math::Vector3f(0,0,-1), math::Vector3f(1,0,0), math::Vector3f(0,-1,0), // ceiling math::Vector3f(1,0,0), math::Vector3f(0,1,0), math::Vector3f(0,0,-1), // west wall math::Vector3f(-1,0,0), math::Vector3f(0,1,0), math::Vector3f(0,0,-1), // east wall math::Vector3f(0,1,0), math::Vector3f(1,0,0), math::Vector3f(0,0,-1), // south wall math::Vector3f(0,-1,0), math::Vector3f(1,0,0), math::Vector3f(0,0,-1) // north wall }; // from radiant tools/quake3/q3map2/map.c // determines best orthagonal axis to project a texture onto a wall (must be identical in radiant!) void texture_axis_from_plane(const Face &face, math::Vector3f &xv, math::Vector3f &yv) { size_t best_axis = 0; float dot = 0; float best = 0; math::Vector3f n(face.normal()*-1); n.normalize(); for (size_t i=0 ; i<6 ; i++) { dot = math::dotproduct(n, texture_baseaxis[i *3]); if( dot > best + MIN_DELTA ) /* ydnar: bug 637 fix, suggested by jmonroe */ { best = dot; best_axis = i; } } xv.assign(texture_baseaxis[best_axis*3+1]); yv.assign(texture_baseaxis[best_axis*3+2]); } // from radiant tools/quake3/q3map2/map.c // creates world-to-texture mapping vecs for crappy quake plane arrangements void face_texture_verts(Face &face, const math::Vector2f &tex_shift, const float tex_rotate, const math::Vector2f & tex_scale) { math::Vector3f vecs[2]; math::Vector2f scale(tex_scale); int sv, tv; float ang, sinv, cosv; float ns, nt; int i, j; texture_axis_from_plane(face, vecs[0], vecs[1]); if (!scale[0]) scale[0] = 1; if (!scale[1]) scale[1] = 1; // rotate axis if (tex_rotate == 0.0f) { sinv = 0.0f ; cosv = 1.0f; } else if (tex_rotate == 90.0f) { sinv = 1.0f ; cosv = 0.0f; } else if (tex_rotate == 180.0f) { sinv = 0.0f; cosv = -1.0f; } else if (tex_rotate == 270.0f) { sinv = -1.0f ; cosv = 0.0f; } else { ang = tex_rotate / 180.0f * M_PI; sinv = sinf(ang); cosv = cosf(ang); } if (vecs[0][0]) sv = 0; else if (vecs[0][1]) sv = 1; else sv = 2; if (vecs[1][0]) tv = 0; else if (vecs[1][1]) tv = 1; else tv = 2; for (i=0 ; i<2 ; i++) { ns = cosv * vecs[i][sv] - sinv * vecs[i][tv]; nt = sinv * vecs[i][sv] + cosv * vecs[i][tv]; vecs[i][sv] = ns; vecs[i][tv] = nt; } for (i=0 ; i<2 ; i++) for (j=0 ; j<3 ; j++) face.get_tex_vec(i)[j] = vecs[i][j] / scale[i]; face.get_tex_shift().assign(tex_shift); } // from radiant tools/quake3/q3map2/map.c // project vertex into texture plane const math::Vector2f map_texture_coords(Face *face, const math::Vector3f &v) { return math::Vector2f ( (face->get_tex_shift().x() + math::dotproduct(face->tex_vec(0), v)) / face->material()->size().width(), (face->get_tex_shift().y() + math::dotproduct(face->tex_vec(1), v)) / face->material()->size().height() ); } // function to test spawnflags inline bool spawnflag_isset(unsigned int spawnflags, unsigned int flag) { return ((spawnflags & flag) == flag); } MapFile::MapFile() : map_center(0.0f, 0.0f, 0.0f) { mapfile_name.clear(); map_brushes = 0; map_faces = 0; map_faces_detail = 0; in_patchdef = false; warning_q2brush = false; } MapFile::~MapFile() { clear_materials(); } void MapFile::clear_materials() { for (Materials::iterator mit = map_materials.begin(); mit != map_materials.end(); mit++) { // delete list of primitives delete(*mit).second; } map_materials.clear(); } bool MapFile::open(std::string const & mapname) { warning_q2brush = false; last_read_was_classname = false; last_read_was_key = false; key_current = ""; value_current = ""; classname_current = ""; line_number = 0; parse_level = 0; clear_materials(); mapfile_name.append(mapname); mapfile_name.append(".map"); mapfile_ifs.open(mapfile_name); if (!mapfile_ifs.is_open()) { return false; } return true; } bool MapFile::got_classname() const { return last_read_was_classname; } bool MapFile::got_classname(const char * classnamelabel) const { return (last_read_was_classname && (classname_current.compare(classnamelabel) == 0)); } bool MapFile::got_classend(const char * classnamelabel) const { return (last_read_was_classend && (classname_current.compare(classnamelabel) == 0)); } bool MapFile::read_patchdef() { char data[1024]; memset(data, 0, sizeof(data)); size_t count = 0; // first line: texture name if (!mapfile_ifs.getline(data, 1023)) return false; else line_number++; // second line: "( a b c d e )" if (!mapfile_ifs.getline(data, 1023)) return false; else line_number++; // third line: "(" if (!mapfile_ifs.getline(data, 1023)) return false; else line_number++; while (mapfile_ifs.getline(data, 1023)) { line_number++; std::istringstream linestream(data); std::string firstword; if (linestream >> firstword) { if (firstword.compare(")") == 0) { //con_debug << " patchDef2 with " << count << " lines" << std::endl; return true; } else { count ++; } } } return false; } bool MapFile::getline() { using math::Vector3f; last_read_was_classname = false; last_read_was_key = false; last_read_was_classend = false; key_current = ""; value_current = ""; if (!mapfile_ifs.is_open()) return false; char data[1024]; memset(data, 0, sizeof(data)); if (mapfile_ifs.getline(data, 1023)) { line_number++; std::istringstream linestream(data); std::string firstword; if (linestream >> firstword) { if (!firstword.size()) { return true; } else if (firstword == "//") { return true; } else if (firstword == "{") { parse_level++; if ((parse_level == 3) && (in_patchdef)) { if (!read_patchdef()) { con_warn << name() << " error reading patchDef2 at line " << line_number << std::endl; } } } else if (firstword == "}") { if ((parse_level == 3) && (in_patchdef)) { // end-of-patchdef in_patchdef = false; } else if ((parse_level == 2) && (planes.size())) { // end-of-brush // for every face for (std::vector::iterator face = planes.begin(); face != planes.end(); face++) { make_brushface((*face)); } // clean planes for (std::vector::iterator it = planes.begin(); it != planes.end(); it++) { delete(*it); } planes.clear(); map_brushes++; value_current.clear(); } else if ((parse_level == 1)) { // end-of-class last_read_was_classend = true; } parse_level--; } else if (parse_level == 1) { if (firstword.compare("\"classname\"") == 0) { classname_current.clear(); if (linestream >> classname_current) { if (classname_current.size() > 2) { classname_current.erase(0,1); classname_current.erase(classname_current.size()-1, 1); last_read_was_classname = true; } else { classname_current.clear(); } } } else if ((firstword.size() > 2) && (firstword[0] == '\"') && (firstword[firstword.size()-1] == '\"')) { key_current.assign(firstword); key_current.erase(0,1); key_current.erase(key_current.size()-1, 1); value_current.clear(); char c; while ((linestream.get(c)) && (c != '"')); while ((linestream.get(c)) && (c != '"')) value_current += c; last_read_was_key = true; } } else if (parse_level == 2) { if (firstword.compare("(") == 0) { // brush plane Vector3f p1, p2, p3; std::string tmp; std::string texture; int n = 0; linestream >> p1; // first plane vertex x y z linestream >> tmp; // ) linestream >> tmp; // ( linestream >> p2; // second plane vertex x y z linestream >> tmp; // ) linestream >> tmp; // ( linestream >> p3; // third plane vertex x y z linestream >> tmp; // ) Face *face = new Face(p1, p2, p3); // material linestream >> texture; aux::to_lowercase(texture); Material *material = Material::find("textures/" + texture); if (!material) { material = new Material("textures/" + texture); Material::add(material); material->set_flags(Material::Texture); material->set_texture(material->name()); } face->set_material(material); // texture alignment float tx, ty, tr, tsx, tsy; linestream >> tx >> ty; // texture shift linestream >> tr; // texture rotation angle linestream >> tsx >> tsy; // texture scale // store the texture transformation for this face face_texture_verts((*face), math::Vector2f(tx, ty), tr, math::Vector2f(tsx, tsy)); // content flags if (!(linestream >> n)) n = 0; if (n > 0) face->set_detail(); // surface flags if (!(linestream >> n)) { n = 0; warning_q2brush = true; } face->set_surface_flags(n); planes.push_back(face); value_current.clear(); } else if (firstword.compare("patchDef2") == 0) { in_patchdef = true; } } } } else { return false; } return true; } void MapFile::make_brushface(Face *face) { using math::Vector3f; // ignore materials with the 'Ignore' flag set if ((face->material()->flags() & Material::Ignore) == Material::Ignore) { return; } // statistics map_faces++; if (face->detail()) { map_faces_detail++; } // using suggestions from // http://www.flipcode.com/archives/Level_Editing.shtml // vertex list std::vector vl; // calculate initial vertices on the bounding box // check if the face is x-axis oriented if ((fabsf(face->normal().x()) >= fabsf(face->normal().y())) && (fabsf(face->normal().x()) >= fabsf(face->normal().z()))) { if (face->normal().x() > MIN_DELTA) { vl.push_back(new math::Vector3f(0, -MAX_BOUNDS, -MAX_BOUNDS)); vl.push_back(new math::Vector3f(0, -MAX_BOUNDS, MAX_BOUNDS)); vl.push_back(new math::Vector3f(0, MAX_BOUNDS, MAX_BOUNDS)); vl.push_back(new math::Vector3f(0, MAX_BOUNDS, -MAX_BOUNDS)); } else { vl.push_back(new math::Vector3f(0, MAX_BOUNDS, -MAX_BOUNDS)); vl.push_back(new math::Vector3f(0, MAX_BOUNDS, MAX_BOUNDS)); vl.push_back(new math::Vector3f(0, -MAX_BOUNDS, MAX_BOUNDS)); vl.push_back(new math::Vector3f(0, -MAX_BOUNDS, -MAX_BOUNDS)); } // calculate the x coordinate of each face vertex for (std::vector::iterator it = vl.begin(); it != vl.end(); it++) { (*it)->get_x() = (-face->d() - face->normal().z() * (*it)->z() - face->normal().y() * (*it)->y()) / face->normal().x(); } } // check if the face is y-axis oriented else if ((fabsf(face->normal().y()) >= fabsf(face->normal().x())) && (fabsf(face->normal().y()) >= fabsf(face->normal().z()))) { if (face->normal().y() > MIN_DELTA) { vl.push_back(new Vector3f(MAX_BOUNDS, 0, -MAX_BOUNDS)); vl.push_back(new Vector3f(MAX_BOUNDS, 0, MAX_BOUNDS)); vl.push_back(new Vector3f(-MAX_BOUNDS, 0, MAX_BOUNDS)); vl.push_back(new Vector3f(-MAX_BOUNDS, 0, -MAX_BOUNDS)); } else { vl.push_back(new Vector3f(-MAX_BOUNDS, 0, -MAX_BOUNDS)); vl.push_back(new Vector3f(-MAX_BOUNDS, 0, MAX_BOUNDS)); vl.push_back(new Vector3f(MAX_BOUNDS, 0, MAX_BOUNDS)); vl.push_back(new Vector3f(MAX_BOUNDS, 0, -MAX_BOUNDS)); } // calculate the x coordinate of each face vertex for (std::vector::iterator it = vl.begin(); it != vl.end(); it++) { (*it)->get_y() = (-face->d() - face->normal().z() * (*it)->z() - face->normal().x() * (*it)->x()) / face->normal().y(); } } // face must be z-axis oriented else { if (face->normal().z() > MIN_DELTA) { vl.push_back(new Vector3f(-MAX_BOUNDS, -MAX_BOUNDS, 0)); vl.push_back(new Vector3f(-MAX_BOUNDS, MAX_BOUNDS, 0)); vl.push_back(new Vector3f(MAX_BOUNDS, MAX_BOUNDS, 0)); vl.push_back(new Vector3f(MAX_BOUNDS, -MAX_BOUNDS, 0)); } else { vl.push_back(new Vector3f(MAX_BOUNDS, -MAX_BOUNDS, 0)); vl.push_back(new Vector3f(MAX_BOUNDS, MAX_BOUNDS, 0)); vl.push_back(new Vector3f(-MAX_BOUNDS, MAX_BOUNDS, 0)); vl.push_back(new Vector3f(-MAX_BOUNDS, -MAX_BOUNDS, 0)); } // calculate the x coordinate of each face vertex for (std::vector::iterator it = vl.begin(); it != vl.end(); it++) { (*it)->get_z() = (-face->d() - face->normal().x() * (*it)->x() - face->normal().y() * (*it)->y()) / face->normal().z(); } } // intersect the face with every plane for (std::vector::iterator pit = planes.begin(); pit != planes.end(); pit++) { Face *plane = (*pit); if (plane == face) { continue; } Vector3f fn = crossproduct(face->point(1)-face->point(0), face->point(2)-face->point(0)); Vector3f pn = crossproduct(plane->point(1)-plane->point(0), plane->point(2)-plane->point(0)); Vector3f t = crossproduct(fn, pn); if ((t.x() == 0) && (t.y() == 0) && (t.z() == 0)) { continue; } // intersect face with plane for (int i=0; vl.size() - i > 0; i++) { Vector3f v(*vl.at(i)); Vector3f next; if (vl.size() - i > 1) { next = *vl.at(i+1); } else { next = *vl.front(); } Vector3f prev; if (i > 0) { prev = *vl.at(i-1); } else { prev = *vl.back(); } if ((v.x() * plane->normal().x() + v.y() * plane->normal().y() + v.z() * plane->normal().z() + plane->d()) < MIN_DELTA) { // find current std::vector::iterator vit = vl.begin(); while ((*vit) != vl.at(i)) { vit++; } // check if prev - v intersects with plane if ((prev.x() * plane->normal().x() + prev.y() * plane->normal().y() + prev.z() * plane->normal().z() + plane->d()) > MIN_DELTA) { // calculate intersection float t1 = -plane->normal().x() * prev.x() - plane->normal().y() * prev.y() - plane->normal().z() * prev.z() -plane->d(); float t2 = (plane->normal().x() * v.x() - plane->normal().x() * prev.x() + plane->normal().y() * v.y() - plane->normal().y() * prev.y() + plane->normal().z() * v.z() - plane->normal().z() * prev.z()); Vector3f *s = new Vector3f; if (t2 == 0) { *s = v; } else { for (int j = 0; j < 3; j++) (*s)[j] = prev [j] + t1 * (v[j] - prev[j]) / t2; } vit = vl.insert(vit,s); vit++; i++; } // check if next - v intersects with plane if ((next.x() * plane->normal().x() + next.y() * plane->normal().y() + next.z() * plane->normal().z() + plane->d()) > MIN_DELTA) { // calculate intersection float t1 = -plane->normal().x() * v.x() - plane->normal().y() * v.y() - plane->normal().z() * v.z() -plane->d(); float t2 = (plane->normal().x() * next.x() - plane->normal().x() * v.x() + plane->normal().y() * next.y() - plane->normal().y() * v.y() + plane->normal().z() * next.z() - plane->normal().z() * v.z()); Vector3f *s = new Vector3f; if (t2 == 0) { *s = v; } else { for (int j = 0; j < 3; j++) (*s)[j] = v [j] + t1 * (next[j] - v[j]) / t2; } vit = vl.insert(vit,s); vit++; i++; } // erase delete *vit; vl.erase(vit); i--; } } } if (vl.size() > 2) { // find the list if primitives for the current material, allocate a new one if necessary Primitives *primitives = 0; Materials::iterator mit = map_materials.find(face->material()); if (mit == map_materials.end()) { primitives = new Primitives(face->material()); map_materials[face->material()] = primitives; } else { primitives = (*mit).second; } // scale vertices and calculate the bounding box for (std::vector::iterator it = vl.begin(); it != vl.end(); it++) { //*(*it) *= SCALE; for (int i=0; i < 3; i++) { if (class_maxbbox[i] < (*(*it))[i] * SCALE) class_maxbbox[i] = (*(*it))[i] * SCALE; if (class_minbbox[i] > (*(*it))[i] * SCALE) class_minbbox[i] = (*(*it))[i] * SCALE; } } // the actual polygon normal is on the other side Vector3f face_normal(face->normal()*-1); face_normal.normalize(); #ifndef HAVE_BULLET // Quads are disable to use model data for bullet physics // split polygon into quads while (vl.size() > 3) { std::vector::iterator v0 = vl.begin(); std::vector::reverse_iterator vn = vl.rbegin(); std::vector::reverse_iterator vn1 = vl.rbegin(); ++vn1; std::vector::reverse_iterator vn2 = vl.rbegin(); ++vn2; ++vn2; Quad *quad = new Quad(*(*vn2) * SCALE, *(*vn1) * SCALE, *(*vn) * SCALE, *(*v0) * SCALE, face_normal, face->detail()); primitives->add_quad(quad); if (face->material()->flags() & Material::Texture) { quad->t0().assign(map_texture_coords(face, *(*vn2))); quad->t1().assign(map_texture_coords(face, *(*vn1))); quad->t2().assign(map_texture_coords(face, *(*vn))); quad->t3().assign(map_texture_coords(face, *(*v0))); } delete(*vn); delete(*vn1); vl.pop_back(); vl.pop_back(); } #endif // split polygon into triangles while (vl.size() > 2) { std::vector::iterator v0 = vl.begin(); std::vector::reverse_iterator vn = vl.rbegin(); std::vector::reverse_iterator vn1 = vl.rbegin(); ++vn1; Triangle * triangle = new Triangle (*(*vn1) * SCALE, *(*vn) * SCALE, *(*v0) * SCALE, face_normal, face->detail()); primitives->add_triangle(triangle); if (face->material()->flags() & Material::Texture) { triangle->t0().assign(map_texture_coords(face, *(*vn1))); triangle->t1().assign(map_texture_coords(face, *(*vn))); triangle->t2().assign(map_texture_coords(face, *(*v0))); } delete(*vn); vl.pop_back(); } } else { con_warn << name() << " unresolved face at line " << line() << std::endl; } // clean up the vertex list for (std::vector::iterator it = vl.begin(); it != vl.end(); it++) { delete(*it); } vl.clear(); } bool MapFile::got_key_string(const char * keylabel, std::string & valuestring) { if (last_read_was_key && (key_current.compare(keylabel) == 0)) { valuestring.assign(value_current); return true; } else { return false; } } bool MapFile::got_key_vector3f(const char * keylabel, math::Vector3f & v) { if (last_read_was_key && (key_current.compare(keylabel) == 0)) { std::istringstream is(value_current); float x, y, z; if ((is >> x) && (is >> y) && (is >> z)) { v = math::Vector3f(x,y,z); } else { v= math::Vector3f(); } return true; } else { return false; } } bool MapFile::got_key_float(const char * keylabel, float & f) { if (last_read_was_key && (key_current.compare(keylabel) == 0)) { std::istringstream is(value_current); if (!(is >> f)) { f = 0; } return true; } else { return false; } } bool MapFile::got_key_int(const char * keylabel, unsigned int & u) { if (last_read_was_key && (key_current.compare(keylabel) == 0)) { std::istringstream is(value_current); if (!(is >> u)) { u = 0; } return true; } else { return false; } } bool MapFile::got_key(const char * keylabel) { return (last_read_was_key && (key_current.compare(keylabel) == 0)); } bool MapFile::got_key_angle(const char * keylabel, float & f) { if (last_read_was_key && (key_current.compare(keylabel) == 0)) { std::istringstream is(value_current); if ((is >> f)) { f = math::degrees360f(f); } else { f = 0; } return true; } else { return false; } } bool MapFile::got_key_color(const char * keylabel, math::Color & color) { if (last_read_was_key && (key_current.compare(keylabel) == 0)) { std::istringstream is(value_current); float r, g, b; if ((is >> r) && (is >> g) && (is >> b)) { if ((r > 1) || (g > 1) || (b > 1)) { r /= 255; g /= 255; b /= 255; } color = math::Color(r, g, b); } else { color = math::Color(); } return true; } else { return false; } } void MapFile::close() { mapfile_ifs.close(); } void MapFile::clear_bbox() { for (int i=0; i < 3; i++) { class_minbbox[i] = MAX_BOUNDS; class_maxbbox[i] = -MAX_BOUNDS; } class_axis.clear(); class_speed = 0; } void MapFile::load_worldspawn(Model *model) { if (!map_materials.size()) return; // FIXME center in maps without brushes map_center = (class_minbbox + class_maxbbox) * 0.5f; model->model_minbbox = class_minbbox - map_center; model->model_maxbbox = class_maxbbox - map_center; model->set_radius(model->model_maxbbox.length()); model->set_origin(map_center); load_fragmentgroup(model, FragmentGroup::None); } void MapFile::load_fragmentgroup(Model *model, const FragmentGroup::Type class_type) { if (!VertexArray::instance() || VertexArray::instance()->overflow()) return; if (!map_materials.size()) return; FragmentGroup *group = new FragmentGroup(); if (class_type == FragmentGroup::Rotate) { if (class_speed == 0) { // default rotation speed 45 degrees per second class_speed = 45.0f; } } if (class_type != FragmentGroup::None) { group->set_transform(true); } group->set_type(class_type); group->set_location((class_minbbox + class_maxbbox) / 2.0f - map_center); group->set_axis(class_axis); group->set_speed(class_speed); math::Vector3f group_center(map_center); if (group->transform()) { group_center += group->location(); } for (Materials::iterator mit = map_materials.begin(); mit != map_materials.end(); mit++) { // split the Primitives with this material into fragments Primitives *primitives = (*mit).second; // store triangles if (primitives->triangles().size()) { Fragment *fragment = new Fragment(Fragment::Triangles, primitives->material()); // add structural triangles to the fragment for (Primitives::Triangles::iterator tris_it = primitives->triangles().begin(); tris_it != primitives->triangles().end(); tris_it++) { Triangle *triangle = (*tris_it); if (!triangle->detail()) { size_t count = 0; count += fragment->add_vertex(triangle->v0()-group_center, triangle->normal(), triangle->t0(), false); count += fragment->add_vertex(triangle->v1()-group_center, triangle->normal(), triangle->t1(), false); count += fragment->add_vertex(triangle->v2()-group_center, triangle->normal(), triangle->t2(), false); if (count == 3) model->model_tris_count++; } } // add detail triangles to the fragment for (Primitives::Triangles::iterator tris_it = primitives->triangles().begin(); tris_it != primitives->triangles().end(); tris_it++) { Triangle *triangle = (*tris_it); if (triangle->detail()) { size_t count = 0; count += fragment->add_vertex(triangle->v0()-group_center, triangle->normal(), triangle->t0(), true); count += fragment->add_vertex(triangle->v1()-group_center, triangle->normal(), triangle->t1(), true); count += fragment->add_vertex(triangle->v2()-group_center, triangle->normal(), triangle->t2(), true); if (count == 3) { model->model_tris_count++; model->model_tris_detail_count++; } } } // add the fragment to the group group->add_fragment(fragment); } // store quads if (primitives->quads().size()) { Fragment *fragment = new Fragment(Fragment::Quads, primitives->material()); // add structural quads to the fragment for (Primitives::Quads::iterator quad_it = primitives->quads().begin(); quad_it != primitives->quads().end(); quad_it++) { Quad *quad = (*quad_it); if (!quad->detail()) { size_t count = 0; count += fragment->add_vertex(quad->v0()-group_center, quad->normal(), quad->t0(), false); count += fragment->add_vertex(quad->v1()-group_center, quad->normal(), quad->t1(), false); count += fragment->add_vertex(quad->v2()-group_center, quad->normal(), quad->t2(), false); count += fragment->add_vertex(quad->v3()-group_center, quad->normal(), quad->t3(), false); if (count == 4) model->model_quad_count++; } } // add detail quads to the fragment for (Primitives::Quads::iterator quad_it = primitives->quads().begin(); quad_it != primitives->quads().end(); quad_it++) { Quad *quad = (*quad_it); if (quad->detail()) { size_t count = 0; count += fragment->add_vertex(quad->v0()-group_center, quad->normal(), quad->t0(), false); count += fragment->add_vertex(quad->v1()-group_center, quad->normal(), quad->t1(), false); count += fragment->add_vertex(quad->v2()-group_center, quad->normal(), quad->t2(), false); count += fragment->add_vertex(quad->v3()-group_center, quad->normal(), quad->t3(), false); if (count == 4) { model->model_quad_count++; model->model_quad_detail_count++; } } } // add the fragment to the group group->add_fragment(fragment); } } // add the group to the model model->add_group(group); } void MapFile::unknown_value() const { con_warn << name() << " unknown value '" << value() << "' for '" << classname() << ":" << key() << "' at line " << line() << std::endl; } void MapFile::unknown_key() const { con_warn << name() << " unknown key '" << classname() << ":" << key() << "' at line " << line() << std::endl; } void MapFile::unknown_class() const { con_warn << name() << " unknown class '" << classname() << "' at line " << line() << std::endl; } Model * MapFile::load(std::string const &name) { // open the .map file MapFile mapfile; if (!mapfile.open(name)) { return 0; } Model *model = new Model(name); mapfile.clear_bbox(); Dock *dock = 0; Particles *particles = 0; Flare *flare = 0; Light *light = 0; SubModel *submodel = 0; std::string modelname; math::Vector3f location; math::Color color; typedef std::list SubModelList; SubModelList submodel_list; unsigned int u; float angle; float r, s; std::string str; while (mapfile.getline()) { if (mapfile.got_classname("worldspawn")) { mapfile.clear_bbox(); } else if (mapfile.got_classend("worldspawn")) { mapfile.load_worldspawn(model); mapfile.clear_materials(); } else if (mapfile.in_class("worldspawn")) { // worldspawn attributes if (mapfile.got_key("name")) { //con_debug << " model name '" << name << "'" << std::endl; continue; } else if (mapfile.got_key_int("enginesound", u)) { model->model_enginesound = u; continue; } else if (mapfile.got_key_int("impulsesound", u)) { model->model_impulsesound = u; continue; } else if (mapfile.got_key_color("enginecolor", model->model_enginecolor)) { continue; } else if (mapfile.got_key()) { mapfile.unknown_key(); } } else if (mapfile.got_classname("func_door")) { mapfile.clear_bbox(); } else if (mapfile.got_classend("func_door")) { mapfile.load_fragmentgroup(model, FragmentGroup::Door); mapfile.clear_materials(); } else if (mapfile.in_class("func_door")) { } else if (mapfile.got_classname("func_group")) { mapfile.clear_bbox(); } else if (mapfile.got_classend("func_group")) { mapfile.load_fragmentgroup(model, FragmentGroup::None); mapfile.clear_materials(); } else if (mapfile.got_classname("func_rotate")) { mapfile.clear_bbox(); } else if (mapfile.got_classend("func_rotate")) { mapfile.load_fragmentgroup(model, FragmentGroup::Rotate); mapfile.clear_materials(); } else if (mapfile.in_class("func_rotate")) { if (mapfile.got_key_float("angle", angle)) { if (angle == ANGLEUP) { mapfile.class_axis.change_pitch(90.0f); } else if (angle == ANGLEDOWN) { mapfile.class_axis.change_pitch(-90.0f); } else { mapfile.class_axis.change_direction(angle); } } else if (mapfile.got_key_float("direction", angle)) { mapfile.class_axis.change_direction(angle); } else if (mapfile.got_key_float("pitch", angle)) { mapfile.class_axis.change_pitch(angle); } else if (mapfile.got_key_float("roll", angle)) { mapfile.class_axis.change_roll(angle); } else if (mapfile.got_key_float("speed", mapfile.class_speed)) { continue; } else if (mapfile.got_key()) { mapfile.unknown_key(); } } else if (mapfile.got_classend()) { mapfile.clear_materials(); } else if (mapfile.got_classname("light")) { // new light light = new Light(); model->add_light(light); continue; } else if (mapfile.classname().compare("light") == 0) { // light attributes if (mapfile.got_key_vector3f("origin", location)) { light->get_location().assign(location * SCALE); continue; } else if (mapfile.got_key_color("_color", color)) { light->get_color().assign(color); continue; } else if (mapfile.got_key_int("spawnflags", u)) { light->set_strobe(spawnflag_isset(u, 1)); light->set_entity(spawnflag_isset(u, 2)); light->set_engine(spawnflag_isset(u, 4)); continue; } else if (mapfile.got_key_float("light", r)) { light->set_radius( r * LIGHTSCALE); continue; } else if (mapfile.got_key_float("radius", r)) { light->set_radius( r * LIGHTSCALE); continue; } else if (mapfile.got_key_float("frequency", r)) { light->set_frequency(r); continue; } else if (mapfile.got_key_float("offset", r)) { light->set_offset(r); continue; } else if (mapfile.got_key_float("time", r)) { light->set_time(r); continue; } else if (mapfile.got_key_int("flare", u)) { light->set_flare(u); continue; } else if (mapfile.got_key()) { mapfile.unknown_key(); continue; } } else if (mapfile.got_classname("fx_flare")) { // new flare flare = new Flare(); model->add_flare(flare); } else if (mapfile.classname().compare("fx_flare") == 0) { // flare attributes if (mapfile.got_key_vector3f("origin", location)) { flare->get_location().assign(location * SCALE); continue; } else if (mapfile.got_key_color("_color", color)) { flare->get_color().assign(color); continue; } else if (mapfile.got_key_int("spawnflags", u)) { flare->set_strobe(spawnflag_isset(u, 1)); flare->set_entity(spawnflag_isset(u, 2)); flare->set_engine(spawnflag_isset(u, 4)); } else if (mapfile.got_key_float("light", r)) { flare->set_radius( r * LIGHTSCALE); continue; } else if (mapfile.got_key_float("radius", r)) { flare->set_radius( r * LIGHTSCALE); continue; } else if (mapfile.got_key_float("frequency", r)) { flare->set_frequency(r); continue; } else if (mapfile.got_key_float("offset", r)) { flare->set_offset(r); continue; } else if (mapfile.got_key_float("time", r)) { flare->set_time(r); continue; } else if (mapfile.got_key_int("flare", u)) { flare->set_flare(u); continue; } else if (mapfile.got_key_float("angle", angle)) { if (angle == ANGLEUP) { flare->get_axis().change_pitch(90.0f); } else if (angle == ANGLEDOWN) { flare->get_axis().change_pitch(-90.0f); } else { flare->get_axis().change_direction(angle); } } else if (mapfile.got_key_float("direction", angle)) { flare->get_axis().change_direction(angle); } else if (mapfile.got_key_float("pitch", angle)) { flare->get_axis().change_pitch(angle); } else if (mapfile.got_key_float("roll", angle)) { flare->get_axis().change_roll(angle); } else if (mapfile.got_key_string("cull", str)) { aux::to_lowercase(str); if (str.compare("none") == 0) { flare->set_cull(CullNone); } else if (str.compare("back") == 0) { flare->set_cull(CullBack); } else if (str.compare("front") == 0) { flare->set_cull(CullFront); } else { mapfile.unknown_value(); } } else if (mapfile.got_key()) { mapfile.unknown_key(); } } else if (mapfile.got_classname("fx_particles")) { // new particle system particles = new Particles(); model->add_particles(particles); } else if (mapfile.classname().compare("fx_particles") == 0) { // particle system attributes if (mapfile.got_key_vector3f("origin", location)) { particles->get_location().assign(location * SCALE); continue; } else if (mapfile.got_key_string("script", str)) { particles->set_script(str); continue; } else if (mapfile.got_key_float("angle", angle)) { if (angle == ANGLEUP) { particles->get_axis().change_pitch(90.0f); } else if (angle == ANGLEDOWN) { particles->get_axis().change_pitch(-90.0f); } else { particles->get_axis().change_direction(angle); } } else if (mapfile.got_key_float("direction", angle)) { particles->get_axis().change_direction(angle); } else if (mapfile.got_key_float("pitch", angle)) { particles->get_axis().change_pitch(angle); } else if (mapfile.got_key_float("roll", angle)) { particles->get_axis().change_roll(angle); } else if (mapfile.got_key_int("spawnflags", u)) { particles->set_entity(spawnflag_isset(u, 2)); particles->set_engine(spawnflag_isset(u, 4)); } else if (mapfile.got_key_float("radius", r)) { particles->set_radius(r * LIGHTSCALE); } else if (mapfile.got_key_string("cull", str)) { aux::to_lowercase(str); if (str.compare("none") == 0) { particles->set_cull(CullNone); } else if (str.compare("back") == 0) { particles->set_cull(CullBack); } else if (str.compare("front") == 0) { particles->set_cull(CullFront); } else { mapfile.unknown_value(); } } else if (mapfile.got_key()) { mapfile.unknown_key(); } } else if (mapfile.got_classname("misc_model")) { // new submodel submodel = new SubModel(); submodel_list.push_back(submodel); } else if (mapfile.classname().compare("misc_model") == 0) { // submodel attributes if (mapfile.got_key_vector3f("origin", location)) { submodel->get_location().assign(location * SCALE); continue; } else if (mapfile.got_key_string("model", modelname)) { // remove extension if (modelname[modelname.size()-4] == '.') { modelname.erase(modelname.size()-4); } submodel->set_name(modelname); continue; } else if (mapfile.got_key_float("angle", angle)) { if (angle == ANGLEUP) { submodel->get_axis().change_pitch(90.0f); } else if (angle == ANGLEDOWN) { submodel->get_axis().change_pitch(-90.0f); } else { submodel->get_axis().change_direction(angle); } } else if (mapfile.got_key_float("modelscale", s)) { if (s) { submodel->set_scale(s); } else { submodel->set_scale(1.0f); } } } else if (mapfile.got_classname("location_dock")) { // new docking location dock = new Dock(); model->add_dock(dock); } else if (mapfile.classname().compare("location_dock") == 0) { // dock attributes if (mapfile.got_key_vector3f("origin", location)) { dock->get_location().assign(location * SCALE); continue; } else if (mapfile.got_key_float("radius", r)) { dock->set_radius (r * SCALE); continue; } else if (mapfile.got_key("angle")) { // TODO continue; } else if (mapfile.got_key()) { mapfile.unknown_key(); } } else if (mapfile.got_classname("location_cannon")) { // TODO cannon attachment point continue; } else if (mapfile.classname().compare("location_cannon") == 0) { // TODO cannon options continue; } else if (mapfile.got_classname("location_turret")) { // TODO turret attachment point continue; } else if (mapfile.classname().compare("location_turret") == 0) { // TODO turret options continue; } else if (mapfile.got_classname("location_cockpit")) { // TODO cockpit location continue; } else if (mapfile.classname().compare("location_cockpit") == 0) { // TODO cockpit options continue; } else if (mapfile.got_classname()) { mapfile.unknown_class(); } } mapfile.close(); // reposition docks, lights, flares and particles according to the model center for (Model::Lights::iterator lit = model->lights().begin(); lit != model->lights().end(); lit++) { (*lit)->get_location() -= mapfile.map_center; } for (Model::Flares::iterator flit = model->flares().begin(); flit != model->flares().end(); flit++) { (*flit)->get_location() -= mapfile.map_center; } for (Model::ParticleSystems::iterator pit = model->particles().begin(); pit != model->particles().end(); pit++) { (*pit)->get_location() -= mapfile.map_center; } for (Model::Docks::iterator dit = model->docks().begin(); dit != model->docks().end(); dit++) { (*dit)->get_location() -= mapfile.map_center; } for (SubModelList::iterator smit = submodel_list.begin(); smit != submodel_list.end(); smit++) { submodel = (*smit); Model *submodel_model = 0; if (submodel->name().size()) { submodel_model = Model::load(submodel->name()); } if (submodel_model) { submodel->get_location() -= mapfile.map_center; // copy fragmentgroups for (Model::Groups::iterator git = submodel_model->groups().begin(); git != submodel_model->groups().end(); git++) { FragmentGroup *groupsrc = (*git); FragmentGroup *groupdst = new FragmentGroup(); groupdst->set_transform(true); groupdst->set_type(groupsrc->type()); groupdst->set_scale(groupsrc->scale() * submodel->scale()); groupdst->set_speed(groupsrc->speed()); groupdst->set_location(submodel->location() + (submodel_model->origin() + groupsrc->location()) * submodel->scale() ); groupdst->set_axis(groupsrc->axis() * submodel->axis()); // copy fragments for (FragmentGroup::iterator fit = groupsrc->begin(); fit != groupsrc->end(); fit++) { Fragment *fragmentdst = new Fragment(*(*fit)); groupdst->add_fragment(fragmentdst); } if (groupdst->size()) { model->add_group(groupdst); } else { delete groupdst; } } // recalculate bbox for (size_t i =0; i < 3; i ++) { float c; c = submodel->location()[i] + (submodel_model->origin()[i] + submodel_model->model_maxbbox[i]) * submodel->scale(); if (c > model->model_maxbbox[i]) { model->model_maxbbox[i] = c; } c = submodel->location()[i] + (submodel_model->origin()[i] + submodel_model->model_minbbox[i]) * submodel->scale(); if (c < model->model_minbbox[i]) { model->model_minbbox[i] = c; } } model->set_radius(sqrtf(math::max(model->model_maxbbox.lengthsquared(), model->model_minbbox.lengthsquared()))); // copy lights, flares and particle systems for (Model::Lights::const_iterator lit = submodel_model->lights().begin(); lit != submodel_model->lights().end(); lit++) { light = new Light(*(*lit)); light->get_location().assign(submodel->location() + (submodel_model->origin() + light->location()) * submodel->scale()); light->set_radius(light->radius() * submodel->scale()); model->add_light(light); } for (Model::Flares::const_iterator flit = submodel_model->flares().begin(); flit != submodel_model->flares().end(); flit++) { flare = new Flare(*(*flit)); flare->get_location().assign(submodel->location() + (submodel_model->origin() + flare->location()) * submodel->scale()); flare->set_radius(flare->radius() * submodel->scale()); model->add_flare(flare); } for (Model::ParticleSystems::const_iterator pit = submodel_model->particles().begin(); pit != submodel_model->particles().end(); pit++) { particles = new Particles(*(*pit)); particles->get_location().assign(submodel->location() + (submodel_model->origin() + particles->location()) * submodel->scale()); particles->set_radius(particles->radius() * submodel->scale()); model->add_particles(particles); } //con_debug << " imported submodel '" << submodel->name() << "'" << std::endl; } delete submodel; } if (mapfile.warning_q2brush) con_warn << mapfile.name() << " quake2 style brushes detected" << std::endl; con_debug << " " << mapfile.name() << " " << mapfile.map_brushes << " brushes " << model->model_tris_detail_count << "/" << model->model_tris_count << " detail/tris " << model->model_quad_detail_count << "/" << model->model_quad_count << " detail/quads" << std::endl; return model; } }