1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
/*
model/vertexarray.cc
This file is part of the Osirion project and is distributed under
the terms of the GNU General Public License version 2
*/
#include <string.h>
#include "math/mathlib.h"
#include "model/vertexarray.h"
#include "sys/sys.h"
namespace model
{
VertexArray *VertexArray::vertex_instance = 0 ;
VertexArray::VertexArray(size_t size)
{
vertex_instance = this;
vertex_size = size * 1024 * 1024; // megabytes
vertex_size = vertex_size / sizeof(float); // sizeof float
vertex_data = (float *) malloc(vertex_size * sizeof(float));
con_print << "^BInitializing vertex array..." << std::endl;
con_print << " " << sizeof(vertex_data) / (1024 * 1024) << " Mb allocated" << std::endl;
clear();
}
VertexArray::~VertexArray()
{
free(vertex_data);
vertex_instance = 0 ;
}
void VertexArray::clear()
{
vertex_index = 0;
vertex_overflow = false;
memset(vertex_data, 0, sizeof(vertex_data));
add_sphere();
}
void VertexArray::add_sphere()
{
// load sphere vertices into the VertexArray
// build sin/cos table
float *sintable;
float *costable;
sintable = new float[SPHERESEGMENTS];
costable = new float[SPHERESEGMENTS];
float d = 2 * M_PI / (SPHERESEGMENTS - 1);
for (int i = 0; i < SPHERESEGMENTS; i++) {
sintable[i] = sin(d * (float) i);
costable[i] = cos(d * (float) i);
}
// draw body
math::Vector3f v;
math::Vector3f n;
float texx, texy;
int quad_count = 0;
// add sphere
for (int j = 0; j < (SPHERESEGMENTS - 1) / 2; j++) {
float r = sintable[j];
float r1 = sintable[j+1];
for (int i = 0; i < SPHERESEGMENTS; i++) {
v = math::Vector3f(r * costable[i], r * sintable[i], costable[j]);
n = v;
n.normalize();
texx = (float)i / (float)(SPHERESEGMENTS - 1);
texy = -costable[j] / 2 + 0.5f;
add_vertex(v, n, texx, texy);
v = math::Vector3f(r1 * costable[i], r1 * sintable[i], costable[j+1]);
n = v;
n.normalize();
texx = (float)i / (float)(SPHERESEGMENTS - 1);
texy = -costable[j+1] / 2 + 0.5f;
add_vertex(v, n, texx, texy);
quad_count++;
}
quad_count--;
}
delete[] sintable;
delete[] costable;
}
size_t VertexArray::add_vertex(math::Vector3f const &v, math::Vector3f const &n, float tex_x, float tex_y)
{
if (vertex_index + 8 >= vertex_size) {
if (!vertex_overflow) {
con_warn << "VertexArray overflow!" << std::endl;
vertex_overflow = true;
}
return 0;
}
// GL_T2F_N3F_V3F
// texture coordinates
vertex_data[vertex_index] = tex_x;
vertex_data[vertex_index+1] = tex_y;
for (int i = 0; i < 3; i ++) {
// normal
vertex_data[vertex_index+2+i] = n[i];
// vertex coordinates
vertex_data[vertex_index+5+i] = v[i];
}
vertex_index += 8;
return 1;
}
void VertexArray::info() {
const size_t mbfl = 1024 * 1024 / sizeof(float);
con_print << " vertex array "
<< vertex_index / mbfl << "/" << vertex_size / mbfl << "Mib "
<< vertex_index / 8 << "/" << vertex_size / 8 << " verts "
<< "^B" << vertex_index * 100 / vertex_size << "%^N used" << std::endl;
}
}
|