1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
/*
render/camera.cc
This file is part of the Osirion project and is distributed under
the terms and conditions of the GNU General Public License version 2
*/
#include "core/core.h"
#include "math/mathlib.h"
#include "math/matrix4f.h"
#include "render/camera.h"
#include "render/gl.h"
#include "sys/sys.h"
using math::degrees360f;
using math::degrees180f;
namespace render
{
const float MIN_DELTA = 10e-10;
const float pitch_track = -15.0f;
const float pitch_overview = -75.0f;
float Camera::camera_aspect = 1.0f;
math::Vector3f Camera::camera_eye;
math::Vector3f Camera::camera_target;
math::Axis Camera::camera_axis;
Camera::Mode Camera::camera_mode;
// current and target yaw angle in XZ plane, positive is looking left
float Camera::direction_current;
float Camera::direction_target;
float Camera::target_direction;
// current and target pitch angle in XY, positive is looking up
float Camera::pitch_current;
float Camera::pitch_target;
float Camera::target_pitch;
float Camera::distance;
void Camera::init()
{
camera_aspect = 1.0f;
direction_current = 0;
direction_target = 0;
pitch_current = pitch_track * 2;
pitch_target = pitch_track;
target_pitch = 0.0f;
target_direction = 0.0f;
distance = 0.4f;
set_mode(Track);
camera_axis.clear();
camera_eye.clear();
camera_target.clear();
}
void Camera::shutdown()
{
}
void Camera::set_aspect(float aspect)
{
camera_aspect = aspect;
}
void Camera::set_mode(Mode newmode) {
direction_target = 0;
direction_current = direction_target;
pitch_target = pitch_track;
pitch_current = pitch_target;
target_direction = 0.0f;
target_pitch = 0.0f;
distance = 0.4f;
camera_axis.clear();
switch(newmode) {
case Track:
// switch camera to Track mode
camera_mode = Track;
if (core::localcontrol()) {
if (core::localcontrol()->state())
camera_axis.assign(core::localcontrol()->state()->axis());
else
camera_axis.assign(core::localcontrol()->axis());
}
break;
case Free:
// switch camera to Free mode
camera_mode = Free;
pitch_target = 2.0 * pitch_track;
pitch_current = pitch_target;
break;
case Cockpit:
camera_mode = Cockpit;
break;
case Overview:
// switch camera to Overview mode
camera_mode = Overview;
default:
break;
}
}
void Camera::next_mode()
{
if (!core::localcontrol()) {
set_mode(Overview);
return;
}
switch(camera_mode) {
case Free:
// switch camera to Track mode
set_mode(Track);
core::application()->notify_message(std::string("view: track"));
break;
case Track:
// switch camera to Cockpit mode
set_mode(Cockpit);
core::application()->notify_message(std::string("view: cockpit"));
break;
case Cockpit:
// switch camera to Free mode
set_mode(Free);
core::application()->notify_message(std::string("view: free"));
break;
default:
break;
}
}
void Camera::draw(float seconds)
{
math::Matrix4f matrix;
math::Axis target_axis;
float d = 0;
if (!core::localcontrol()) {
if (camera_mode != Overview) {
set_mode(Overview);
}
camera_eye.clear();
camera_target.clear();
camera_axis.clear();
pitch_current = pitch_overview;
camera_axis.change_pitch(pitch_current);
distance = 20.0f;
} else {
if (mode() == Overview)
set_mode(Track);
if (core::localcontrol()->state()) {
camera_target.assign(core::localcontrol()->state()->location());
target_axis.assign(core::localcontrol()->state()->axis());
} else {
camera_target.assign(core::localcontrol()->location());
target_axis.assign(core::localcontrol()->axis());
}
if (core::localcontrol()->model()) {
distance = core::localcontrol()->model()->radius();
} else {
distance = 1.0f;
}
if (mode() == Track) {
float cosangle;
float angle;
float side;
float u;
//const float camspeed = 90.0f * seconds; // 180 degrees per second
math::Vector3f n;
math::Vector3f p;
// camera axis: pitch
// project target_axis.up() into the plane with axis->left() normal
n = camera_axis.left();
p = target_axis.up();
u = p[0]*n[0] + p[1]*n[1] + p[2]*n[2] / (-n[0]*n[0] - n[1]*n[1] - n[2] * n[2]);
p = target_axis.up() + u * n;
side = camera_axis.forward().x * p.x +
camera_axis.forward().y * p.y +
camera_axis.forward().z * p.z;
if ((fabs(side) - MIN_DELTA > 0)) {
cosangle = math::dotproduct(p, camera_axis.up());
if (fabs(cosangle) + MIN_DELTA < 1 ) {
angle = acos(cosangle) * 180.0f / M_PI;
angle = math::sgnf(side) * angle * seconds;
camera_axis.change_pitch(-angle);
}
}
// camera axis: direction
// project target_axis.forward() into the plane with axis.up() normal
n = camera_axis.up();
p = target_axis.forward();
u = p[0]*n[0] + p[1]*n[1] + p[2]*n[2] / (-n[0]*n[0] - n[1]*n[1] - n[2] * n[2]);
p = target_axis.forward() + u * n;
side = camera_axis.left().x * p.x +
camera_axis.left().y * p.y +
camera_axis.left().z * p.z;
if ((fabs(side) - MIN_DELTA > 0)) {
cosangle = math::dotproduct(p, camera_axis.forward());
if (fabs(cosangle) + MIN_DELTA < 1 ) {
angle = acos(cosangle) * 180.0f / M_PI;
angle = math::sgnf(side) * angle * seconds;
camera_axis.change_direction(angle);
}
}
// camera axis: roll
// project target_axis.up() into the plane with axis.forward() normal
n = camera_axis.forward();
p = target_axis.up();
u = p[0]*n[0] + p[1]*n[1] + p[2]*n[2] / (-n[0]*n[0] - n[1]*n[1] - n[2] * n[2]);
p = target_axis.up() + u * n;
side = camera_axis.left().x * p.x +
camera_axis.left().y * p.y +
camera_axis.left().z * p.z;
if ((fabs(side) - MIN_DELTA > 0)) {
cosangle = math::dotproduct(p, camera_axis.up());
if (fabs(cosangle) + MIN_DELTA < 1 ) {
angle = acos(cosangle) * 180.0f / M_PI;
angle = math::sgnf(side) * angle * seconds;
camera_axis.change_roll(angle);
}
}
if (core::localcontrol()->model()) {
camera_target -= (core::localcontrol()->model()->maxbbox().x + 0.1f) * camera_axis.forward();
camera_target += (core::localcontrol()->model()->maxbbox().z + 0.1f ) * camera_axis.up();
}
} else if (mode() == Free) {
camera_axis.assign(target_axis);
direction_target = direction_current - 90 * target_direction;
pitch_target = pitch_current - 90 * target_pitch;
// adjust direction
d = degrees180f(direction_current - direction_target);
direction_current = degrees360f( direction_current - d * seconds);
camera_axis.change_direction(direction_current);
// adjust pitch
d = degrees180f(pitch_current - pitch_target);
pitch_current = degrees360f(pitch_current - d * seconds);
camera_axis.change_pitch(pitch_current);
} else if (mode() == Cockpit) {
camera_axis.assign(target_axis);
if (core::localcontrol()->state()) {
if (core::localcontrol()->model()) {
camera_target += (core::localcontrol()->model()->maxbbox().x+0.05) *
core::localcontrol()->state()->axis().forward();
} else {
camera_target += (core::localcontrol()->radius() + 0.05) *
core::localcontrol()->state()->axis().forward();
}
}
distance = 0.0f;
}
}
// Change to the projection matrix and set our viewing volume.
gl::matrixmode(GL_PROJECTION);
gl::loadidentity();
const float frustum_size = 0.5f;
const float frustum_front = 1.0f;
distance += frustum_front;
gl::frustum(-frustum_size*aspect(), frustum_size*aspect(), -frustum_size, frustum_size, frustum_front, 1024.0f);
// model view
gl::matrixmode(GL_MODELVIEW);
gl::loadidentity();
// map world coordinates to opengl coordinates
gl::rotate(90.0f, 0, 1.0, 0);
gl::rotate(-90.0f, 1.0f , 0, 0);
// assign transformation matrix
matrix.assign(camera_axis);
// apply the transpose of the axis transformation (the axis is orhtonormal)
gl::multmatrix(matrix.transpose());
// match the camera with the current target
gl::translate(-1.0f * camera_target);
// apply camera offset
gl::translate(distance * camera_axis.forward());
// calculate eye position
camera_eye = camera_target - (distance * camera_axis.forward());
}
void Camera::set_direction(float direction)
{
target_direction = direction;
math::clamp(target_direction, -1.0f, 1.0f);
}
void Camera::set_pitch(float pitch)
{
target_pitch = pitch;
math::clamp(target_pitch, -1.0f, 1.0f);
}
void Camera::reset()
{
set_mode(camera_mode);
}
}
|